11.9 . Summary 581

least recently used (LRU) force query language logging
“two-phase commit no force _ disaster recovery

steal record-level logging

not steal

Exercises

page-level logging

1.1

11.2

113

11.4

115

11.7

118

119

11.1
11.11

11.12

What if anything can be done to recover the modifications made by partially completed
transactions that are running at the time of a system crash? Can online transactions be
recovered?

‘In a database system that uses an update-in-place scheme, how can the recovery system

recover from a system crash if the write ahead protocol is used for the log information?

What modifications have to be made to a recovery scheme if the transactions are nested? (In
a nested transaction one transaction is contained within another transaction.)

In the recovery technique known as forward error recovery, on the detection of a particular
error in a system, the recovery procedure consists of adjusting the state of the system to
recover from the error (without suffering the loss that could have occurred hecause of the
error). Can such a technique be used in a DBMS to recover from system crashes with the
loss of volatile storage?

Show how the backward error recovery technique is applied to a DBMS that uses the update-
in-place scheme to recover from a system crash with a minimum loss of processing.

If the checkpoint frequency is too low, a system crash will lead to the loss of a large number
of transactions and a long recovery operation; if the checkpoint frequency is too high, the
cost of checkpointing is very high. Can you suggest a method of reducing the frequency of
checkpointing without incurring a heavy recovery operation and at the same time reducing
the number of lost transactions? '

How can a recovery system deal with recovery of interactive transactions on online systems
such as banking or airline reservatiors? Suggest a method to be used in such systems to
restart active transactions after a system crash.

For a logging scheme based on a DML, give the kind of log entry required and indicate the
undo and the redo part of the log. »

If the write-ahead log scheme is being used, compare the strategy of writing the partial
update made by a transaction to the database to the strategy of delaying all 'writes to the
database till the commit.

How is the checkpoint information used in the recovery operation following a system crash?
Define the following terms:

Write-ahead log strategy
Transaction-consistent checkpoint
Action-consistent checkpoint
Transaction oriented checkpoint
Two-phase commit

From the point of view of recoveryy compare the shadow page scheme with the update in
place with forced and'no steal buffering.

852 ~ Chapter 11 Recovery

14.13 Explain why no undo operations need be done for recovery trom loss ot nonvolatile storage
loss.

11.14 What type of software errors can cause a failure with loss of volatile storage?

11.18 What is the difference between transaction oriented checkpointing and the write-ahead log
strategy?

11.16 What are the advantages and disadvantages of each of the methods of logging discussed in
Section 11.6?

41.17 Consider the update-in-place scheme, where the database system defers the propagation of
updates to the database until the transaction commits (see Section 11.4.1). Describe the
recovery operations that have to be undertaken following a system crash with lnss of volatile
storage.

Bibliographic Notes

Some of the earliest work in recovery was reported in (Oppe 68), (Chan 72), (Bjor 73), and
(Davi 73). Analytical models for recovery and rollback and discussions are presented in (Chan
75). The concept of transaction and its management is presentéd in (Gray 78). The recovery
system for System R is presented in (Gray 81a); the shadow page scheme used in System R
is described in an earlier paper (Lori 77). (Verh 78) is an early survey article on database
recovery; (Haer 83) and (Kohl 81) are more recent survey articles based on the transaction
paradigm. An efficient logging scheme for the undo operation is discussed in (Reut 80). (Teng
84) discusses the buffer management function to optimize database performance for the DB2
relational database system.

The concept of nested transaction was discussed by (Gray 81a); more recent discussions
are preserted in (Moss 85). _

Textbooks discussing the recovery operation are (Bern 88), (Date 83), (Date 86), and
(Kort 86). Reliability concepts are presented in (Wied 83).

Bibliography

(Bern 88) P. Bemstcm, V. Hadzilacos, & N. Goodman, Concurrency Control and Recovery in Database
- Systems. Reading, MA: Addison-Wesley, 1988.

(Bjor 73) L- A. Bjork; ‘‘Recovery Scenario for a DB/DC System,’’ Pruc. of the ACM Annual Conterence,
" 1973, pp. 142-146.

(Chan 72) K M: Chandy, & C. V. Ramamoorthy, ‘‘Rollback and Recovery Strategies for Computer
Programs,”” IEEE . C-21(6), June 1972, pp. 546-555.

(Chan 75) K. M. Chandy, J. C. Browne, C. W. Dissly, & W. R. Uhrig, ‘‘Analytic Models for Rollback and
Recovery Strategies in Data Base Systems,’* IEEE SE-1(1), March 1975, pp. 100-110.

(Date 83) C. J. Date, An Introduction to Database Systems, vol. 2, Reading, MA: Addison-Wesley, 1983.

(Date 86) C. J. Date, An Introduction to Database Systems, vol. 1,. 4th ed. Reading, MA: Addison-Wesley,
1986. .

(Davi 73) J. C. Davies Jr., ‘‘Recovery Semantics for a DB/DC System.’” Proc. of the ACM Annual
Conference, 1973, pp. 136-141.

(Gior 76) N. J. Giordano, & M. S. Schwartz. ‘‘Database Recovery at CMIC,’’ Proc. ACM SIGMOD Conf. on
Management of Data, June 1976, pp. 33-42.

11.9 Summary 553

(Gray 78) J. N. Gray, *‘Notes on Database Operating Systems,”” in R. Bayer et al., ed., Operating Systems: An
Advanced Course. Berlin: Springer-Verlag, 1978.

(Gray 81) J. N. Gray, *‘The Transaction Concept: Virtues and Limitations,”” Proc. of the Intnl. Conr. on
VLDB, 1981, pp. 144-154. ‘

(Gray 81b) J. N. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, & 1. Traiger,
““The Recovery Manager of the System R Database Manager,”” ACM Computing Survevs
13(2), June 1981, pp. 223-242.

(Haer 83) T. Haerder, & A. Reuter, **Principles of Transaction(ru0,1n)Oriented Database Recovery,”' ACM
Computing Surveys 15(4), December 1983, pp. 287-317. '

(Kohl 81) K. H. Kohler, “‘A Survey of Techniques for Synchronization and Recovery in Decentralized
Computer Systems,”” ACM Computing Surveys 13(2), June 1981, pp. 148-183.

(Kort 86) H. F. Korth, & A. Silberschatz, Database System"Concep!v New York: McGraw-Hill, 1986.

(Lori 77) R. Lorie, **Physical Integrity in a Large Segmented Database,”” ACM TODS 2(1), March I977 pp.
91-104.

(Lync 83) N. A. Lynch, **Multilevel Atomicity—A New Correctness Criterion for Dmabasc Concurrency
Control,”” ACM TODS 8(4), December 1983, pp. 484-502.

(Moss 85) J. Moss, J. & B. Eliot, Nested Transactions: An Approach to Reliable Distributed Computing.
Cambridge, MA: MIT Press, 1985.

(Oppe 68) G. Oppenheimer, K. P. Clancy, Considerations of Software Protection and Recovery from Hardware
Failures. Washington, D.C.: FICC, 1968.

(Reut 80) A. Reuter, ‘A Fast Transaction-Oriented Logging Scheme For UNDO Recovery.”” /EEE SE 6(4),
July 1980, pp. 348-356.

(Seve 76) D. G. Severance, & G. M. Lohman, *'Differential Files: Their Application to the Maintenance of
Large Databases,”” ACM TODS 1(3), September 1976, pp. 256-267.

(Teng 84) J. Z. Teng, & R. A. Gumaer, ‘‘Managing IBM Databasc 2 Buffers to Maximize Performance.” IBM
Systems Journal 23(2), 1984, pp. 211-218.

(Verh 78) J. S. M. Verhofstad, ‘*Recovery Techniques for Database Systems,”” ACM Computing Surveys 10(2),
June 1978, pp. 167-195.

(Wied 83) Gio Wiedethold, Database Design, 2nd ed. New York: McGraw-Hill, 1983.

Chapter 12 Concurrency Management

the user. One method of enforcing mutual exclusion is by some type of locking
mechanism that locks a shared resource (for example a data-item) used by a trans-
action for the duration of its usage by the transaction. The locked data-item can only
be used by the transaction that locked it. The other concurrent transactions are locked
out and have to wait their turn at using the data-item. However, a locking scheme
must be fair. This requires that thé lock manager, which is the DBMS subsystem
managing the locks, must not cause some concurrent transaction to be permanently
blocked from using the shared resource. This is referred to as avoiding the starvation
or livelock situation. The other danger to be avoided is that of deadlock, wherein a
number of transactions are waiting in a circular chain, each waiting for the release
of resources held by the next transaction in the chain.

In other methods of concurrency control, some form of a priori ordering with a
single or many versions of data is used. These methods are called timestamp ordering
and multiversion schemes. The optimistic approach, on the other hand, assumes that
the data-items used by concurrent transactions are most likely be disjoint.

Concurrency and Possible Problems

Figure 12.1

In the last chapter we stressed that a correct transaction, when completed, leaves the
database in a consistent state provided that the database was in a consistent state at
the start of the transaction. Nevertheless, during the life of a transaction, the database
could be inconsistent, although if the inconsistencies are not accessible to other trans-
actions, they would not cause a problem.

In the case of concurrent operations, where a number of transactions are running
and using the database, we cannot make any assumptions about the order in which
the statements belonging to different transactions will be executed. The order in
which these statements are executed is called a schedule. Consider the two trans-
actions in Figure 12.1. Each transaction reads some data-item, performs some oper-
ations on the data-item that could change its value, and then writes out the modified
data-item.

In Figure 12.1 and in subsequent examples in this chapter, we assume that the
read operation reads in the database value of the named variable to a local variable
with an identical name. Any modifications by a transaction are made on this local
copy. The modifications made by the transactions are indicated by the operators f;
and f, in Figure 12.1. These modifications are not reflected in the database until the
write operation is executed, at which point the modifications in the value of the

Two concurrent transactions.

Transaction T, Transaction T,

Read(Avg_Faculty_Salary) Read(Avg.Staff _Salary)

Avg_Faculty_Salary := Avg_Staff_Salary : =
fi(Avg_Faculty_Salary) Sf(Avg_Staff-_Salary)

Write{Avg_Faculty_Salary) Write(Avg_Staff_Salarv)

12.1 Introduction 5587

Figure 12.2

Possible interleaving of concurrent transactions of Figure 12.1.

12.1.1

Schedule | Schedule 2

Read(Avg_Staff._Salary)
Avg_Staff_Salary : =

Read(Avg_Faculty_Salary)
Avg_Faculty_Salary : =

T fi(Avg_Faculty_Salary) T fr(Avg_Staff_Salary)

i Write(Avg_Faculty_Salary) 1 Read(Avg_Faculty_Salary)

m | Read(Avg_Staff_Salary) m | Avg Faculty_Salary : =

e Avg_Staff_Salary : = e fi(Avg_Faculty_Salary)
J(Avg_Staff_Salary) Write(Avg_Faculty_Salary)

v Write(Avg_Staff_Salary) v Write(Avg_Staff_Salary)

aamed variable are said to be committed. In effect the write operation is a signal for
committing the modifications and reflecting the changes to the physical database.

Figure 12.2 gives two possible schedules for executing the transactions of Figure
12.1 in an interleaved manner. Since the transactions of Figure 12.1 are accessing
and modifying distinct data-items, (Avg_Faculty_Salary, Avg_Staff_Salary), there is
no problem in executing these transactions concurrently. In other words, regardless
of the order of interleaving of the statements of these transactions, we will get a
consistent database on the termination of these transactions.

Lost Update Problem

Figure 12.3

Consider the transactions of Figure 12.3. These transactions are accessing the same
data-item A. Each of the transactions modifies the data-item and writes it back. Again
let us consider a number of possible interleavings of the execution of the statements
of these transactions. These schedules are given in Figure 12.4.

Starting with 200 as the initial value of A, let us see what the value of A would
be if the transactions are run without any interleaving. In other words, the trans-
actions are run to completion, without any interruptions, one at a time in a serial
manner. If transaction T; is run first, then at the end of the transaction the value of
A will have changed from 200 to 210. Running transaction T, after the completion
of T; will change the value of A from 210 to 231. Running the transactions in the

Two transactions modifying the same data-item.

Transaction T;

Read(A)
=A+ 10
Write(A)

Transaction T,

Read(A)
A:=A*1.1
Write(A)

Chapter 12

Concurrency Management

Figure 12.4

Two schedules for transactions of Figure 12.3.

12.1.2

Schedule 1 Transaction T; Transaction T, Value of A
Read(A) Read(A) 200

T | A:=Aa%*1.1 A:=A*11

i Read(A) Read(A)

m| A:=A+10 A:=A+10

€ Write(A) Write(A) 210
Write(A) Write(A) 220

(@
Schedule 2 Transaction T; Transaction T, Value of A
i Read(A) Read(A) 200

T A:=A+10 A:=A+10

i Read(A) Read(A)

m| A:=A*1.1 A:=A*1.l1

e Write(A) Write(A) 220
Write(A) Write(A) 210

(b)

order T, followed by Tj result in a final value for A of 230. The result obtained with
neither of the two interleaved execution schedules of Figure 12.4 agrees with either
of the results of exécuting these same transactions serially. Obviously something is
wrong! ‘

In each of the schedules given in Figure 12.4, we have lost the update made by
one of the transactions. In schedule 1, the update made by transaction T; is lost; in
schedule 2, the update made by transaction T, is lost. Each schedule exhibits an
example of the so-called lost update problem of the concurrent execution of a num-
ber of transactions.

It is obvious that the reason for the lost update problem is that even though we
have been able to enforce that the changes made by one concurrent transaction are
not accessible by the other transactions until it commits, we have not enforced the
atomicity requirement. This demands that only one transaction can modify a given
data-item at a given time and other transactions should be locked out from even
viewing the unmodified value (in the database) until the modifications (being made
to a local copy of the data) are committed to the database.

Inconsistent Read Problem

The lost update problem was caused by concurrent modifications of the same data-
item. However, concurrency can also cause problems.when only one transaction
modifies a given set of data while that set of data is being used by other transactions.

